STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	17BP.8.R.132	1	33

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY _RANDOLPH

PROJECT DESCRIPTION REPLACE BRIDGE NO. 750352 ON -L- (SR 2143 /CARL ALLRED RD) OVER BUSH CREEK

CONTENTS

SHEET NO.	<u>DESCRIPTION</u>
1	TITLE SHEET
2, 2A	LEGEND (SOIL & ROCK)
2B, 2C	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4-5	PROFILES
6-9	CROSS SECTIONS
10-22	BORE LOGS AND CORE PHOTOGRAPHS
23-30	LABORATORY TEST RESULTS

PERSONNEL

A. BHUIYAN

P. PATTON

R. NORWOOD

T. MILLER

INVESTIGATED BY _S&ME, INC.

DRAWN BY __C. CHANDLER

CHECKED BY K. HILL

SUBMITTED BY _L. CAMPOS

DATE __JUNE 2019

9751 SOUTHERN PINE BLVD CHARLOTTE, NC 28273 (704) 523-4726

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (99) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOL THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE OF INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEM NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED TO THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

UNLESS ALL SIGNATURES COMPLETED

PROJECT REPERENCE NO.	SHEET NO.
17BP.8.R.132	2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 1 OF 2)

	SOIL DESCRIPTION													1 OF 2)							
						<u> </u>	DE	<u>SC</u> R	IPTI	ON					GRADATION						
BE PENE ACCORD IS CONSIST	TRATED ING TO BASED O ENCY, CO	WITH A THE ST N THE LOR, TE	A COI TANDI AAS EXTU	NTINU ARD P HTO S RE, MC	OUS F OUS F ENETF SYSTER	, SEMI LIGHT RATION M. BAS RE, AA	-CONSO POWE TEST SIC DE SHTO (DLIDATE R AUGE (AASH SCRIPT CLASSIE	D, OR R ANI TO T IONS	WEATHER O YIELD L 206, ASTN GENERALL ON, AND O	D EARTH NESS THAN D1586). S INCLUDE THER PERT	100 BLOWS OIL CLASS THE FOLL INENT FAC	S PER SIFICA OWING CTORS	R FOOT ATION G:	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS						
	AS MINER VERY ST	FF,GRA	Y,SIL	Y CLA	Y ,M OIS	T WITH	INTER	RBEDDE	FINE	SAND LAY	ERS, HIGHLY	PLASTIC, A-i	PLE. 7-6		THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.						
GENERAL				LEG AR MATI			ID A			LASSI MATERIALS	FICATIO				MINERALOGICAL COMPOSITION						
CLASS. GROUP	A-1	(≤		ASSING)				SING #200) A-6 A-	7 A-1, A-2	ORGANIC MA		LS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.						
CLASS.	A-1-a A-	1-ь	-	4-2-4	A-2-5	A-2-6				A-7- A-7		A-6, A			COMPRESSIBILITY						
SYMBOL						\sim			1.7.1						SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50						
% PASSING *10	FQ 181										GRANULA	SILT	r-	MUCK,	HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL						
*40 *200	50 MX 30 MX 50 15 MX 25			35 MX	35 MX	35 MX	35 MX	36 MN	36 MN	36 MN 36	SOILS	CLA SOIL		PEAT	ORGANIC MATERIAL GRANULAR SILT - CLAY ORGANIC MATERIAL SOLLS OTHER MATERIAL						
MATERIAL PASSING *40 LL PI	_ 6 MX						41 MN 11 MN			40 MX 41 I	IN LI	ILS WITH		HIGHLY	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE						
GROUP INDEX	0		0	Ø		4	MX	8 MX	12 MX	16 MX NO	4X AM	oderate Ounts of		ORGANIC SOILS	GROUND WATER						
USUAL TYPES OF MAJOR MATERIALS	USUAL TYPES STONE FRAGS. EINE SILTY OF CLAVEY STITY CLAVEY MATTER											ORGANIC MATTER	30123	▼ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING STATIC WATER LEVEL AFTER 24 HOURS ■ CONTROL OF THE PROPERTY OF TH							
AS SUBMADE PUUR									FAIR T	0 POOR) P00	UNSUITABLE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA							
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS												0		SPRING OR SEEP MISCELLANEOUS SYMBOLS							
CONSISTENCY OR DENSENESS COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED									GE OF	STANDARD	R/										
	CONSISTENCY PENE HAILON RESISTENCE COMPRESSIVE STRENGT (N-VALUE) (TONS/FT ²)						ALUE)	CE CO			WITH SOIL DESCRIPTION OF ROCK STRUCTURES										
GRANUL	CENERALLY					0 10		N	/A		SUIL STMBUL TEST BURING INSTALLATION										
	MATERIAL DENSE (NON-COHESIVE) VERY DENSE VERY SOFT						0 50		.,,	/ n		ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER									
GENERA	ALLY				Y SOF	FT			2 T	2 0 4		< 0 0.25	0.25 TO 0.	.5	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD						
SILT-C MATERI	LAY			MEDIL		IFF			4 T	0 8		0.5 1			INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE						
(COHES				VERY	'STI	FF			15 T	0 3Ø 3Ø		2 T	0 4		→→→→→→ ALLUVIAL SOIL BOUNDARY △ PIEZOMETER INSTALLATION → SPT N-VALUE						
					TEX	TUF	RE O	R GF	RAIN	SIZE					RECOMMENDATION SYMBOLS						
U.S. STD. SI OPENING (M		E			4 4.76	5 3	10 2.00	40 0.42		0.25 Ø.	00 270 075 0.05				UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSI						
BOULDE (BLDR.		COBB			GRAV (GR.			COARS SANI (CSE. S)	Si	NE ND SD.)	SILT (SL.)		CLAY (CL.)	UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACI						
GRAIN M				75			2.0	1002.		0. 25	0.05	5 0.	.005		AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST						
SIZE IN	1. 12			3	CTI			0000			TEDI				BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY γ - UNIT WEIGHT						
SOIL	MOISTL	SO RE SC		MUI			- CI				TERM				CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 _d - DRY UNIT WEIGH CSE COARSE ORG ORGANIC						
	TERBERO					DE	SCRIP1	TION			R FIELD M				DMT - DILATOMCTER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON						
ᄔ	. 丄 L10	UID LI	IMIT		_		SAT.)				OW THE C				e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK						
PLASTIC RANGE < (PI) PL	STIC SEMISOLID: REQUIRES DRYING TO									то		FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS ω - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO									
	OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOIST						SOLID; AT	OR NEAR	OPTIMUM	MOIS	STURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:									
SL	SL _ SHRINKAGE LIMIT									я то		CME-45C CLAY BITS X AUTOMATIC MANUAL G' CONTINUOUS FLIGHT AUGER CORE SIZE:									
PLASTICITY												X CME-55									
PLASTICITY INDEX (PI) DRY STRENGTH								PI)			Н	CME-550 HARD FACED FINGER BITS X-N Q									
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT										SLIG		VANE SHEAR TEST									
	DERATEL GHLY PLA		STIC					16-25 OR MC	IRE			MEDI HIG			POST HOLE DIGGER						
							C	OLOR							TRICONE TUNGCARB. SOLINDING ROD						
															CME-750 CORE BIT VANE SHEAR TEST						
	SSCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.																				

17BP.8.R.132

2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 2 OF 2)

ROCK DESCRIPTION HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.

ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES 2 100 BLOWS PER FOOT IF TESTED. FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.

FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.

COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC. CRYSTALLINE ROCK (CR) NON-CRYSTALLINE ROCK (NCR) COASTAL PLAIN SEDIMENTARY ROCK (CP) WEATHERING FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE. (V SLI.) ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO SLIGHT 1 INCH, OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. (SLI.) MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK. ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH MODERATELY SEVERE (MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT SEVERE REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. (SEV.) IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VERY SEVERE (V SEV.) VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND COMPLETE SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ROCK HARDNESS CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES VERY HARD SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED HARD TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.

CAN BE GROOVED OR GOLIGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFF OR PICK POINT. MEDILIM CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE HARD POINT OF A GEOLOGIST'S PICK. CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. SOFT VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY B FINGERNAIL.

FRACTURE SPACING BEDDING TERM TERM THICKNESS SPACING VERY WIDE MORE THAN 10 FEET 3 TO 10 FEET VERY THICKLY BEDDED THICKLY BEDDED 4 FEET 1.5 - 4 FEET 0.16 - 1.5 FEET WIDE THINLY BEDDED
VERY THINLY BEDDED
THICKLY LAMINATED MODERATELY CLOSE 1 TO 3 FEET CLOSE VERY CLOSE 0.03 - 0.16 FEET 0.008 - 0.03 FEET LESS THAN 0.16 FEET THINLY LAMINATED < 0.008 FEET

INDURATION

FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER EREES NUMEROUS GRAINS. GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER. MODERATELY INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: INDURATED DIFFICULT TO BREAK WITH HAMMER. SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.

TERMS AND DEFINITIONS

ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA.

ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.

ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.

ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND

CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.

CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.

DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.

DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.

 $\underline{\text{DIP DIRECTION (DIP AZIMUTH)}}$ - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.

FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.

FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.

 $\frac{\text{FLOAT}}{\text{PARENT}} - \text{ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.}$

FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.

JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.

 $\underline{\text{LEDGE}}$ - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.

LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.

MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.

PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVINING STRATIM AN INTERVENING IMPERVIOUS STRATUM.

RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.

ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.

<u>SAPROLITE (SAP.)</u> - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.

<u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.

SLICKENSIDE - I - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT

STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.

STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.

STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL. TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.

TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.

BENCH MARK: BM#I BENCH TIE NAIL IN POPLAR TREE STA. 14+96 -L-, 39.26' RT N 736582, E 1785822 ELEVATION: 572.32 FEET

FIAD: FILLED IMMEDIATELY AFTER DRILLING

DATE: 8-15-14

17BP.8.R.132 **2B**

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

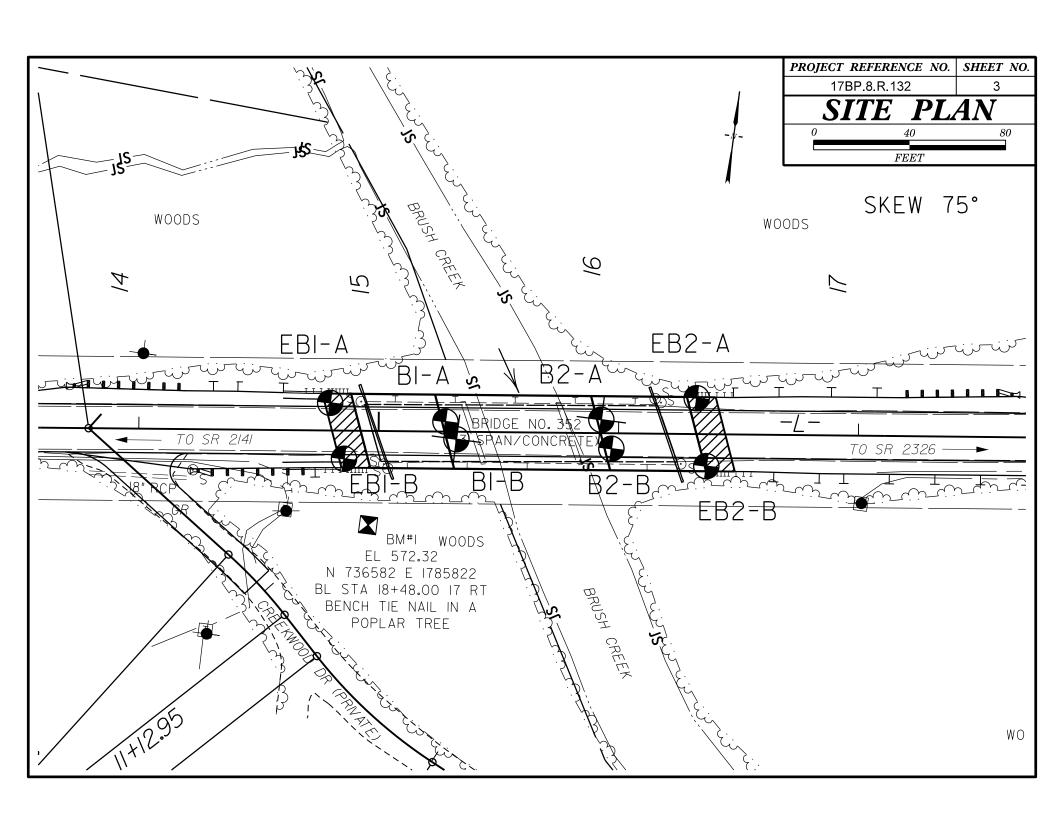
SUBSURFACE INVESTIGATION

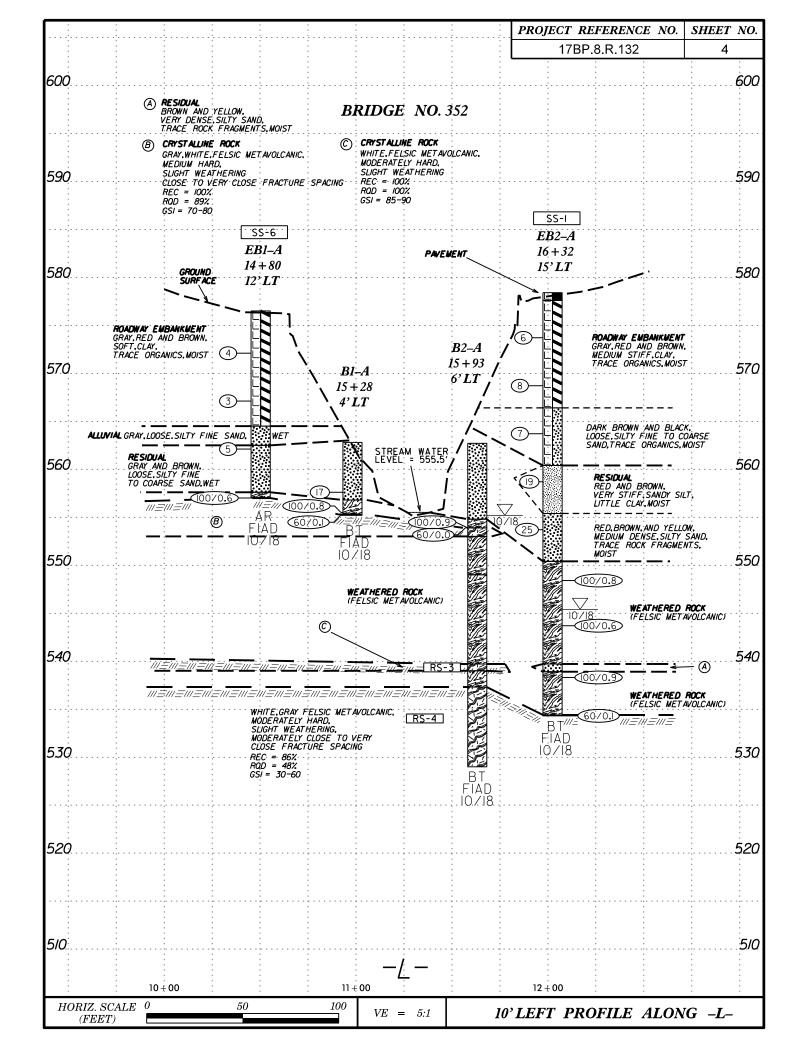
SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSL) TARLES

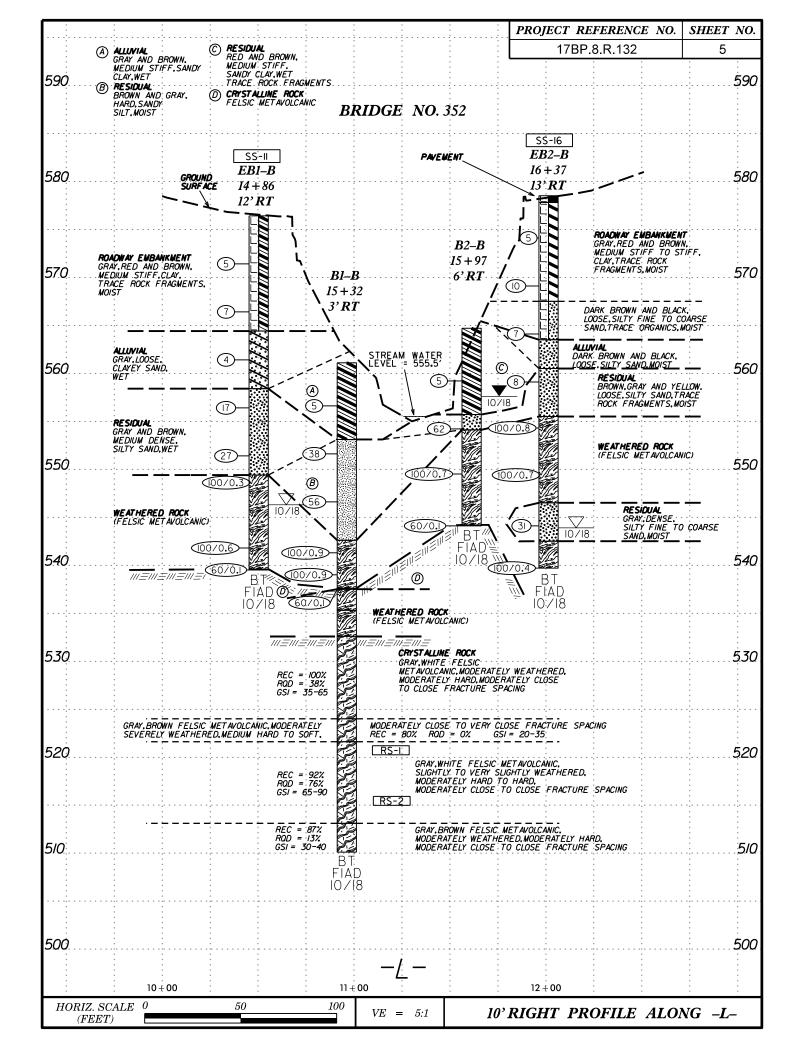
SUPPLEMENTAL LEGEND, GEOLOG FROM AASHTO LRFD BRIDGE D. AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Jointe	ESIGN	I SPE	CIFICATI	ONS (PAC	I) TABLE GE 1 OF	S 2)
present. When working with rocks in the	< 1 I	VERY GOOD Very rough, fresh unweathered surfaces	COOD Surfaces Surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	<pre> VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings</pre>
INTACT OR MASSIVE - intact rock specimens or massive in	.9	$\overline{}$	THE HOLL OF	///		
situ rock with few widely spaced discontinuities	SIL	80_			N/A	N/A
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	F ROCK PIECE		70 60			
	RLOCKING OF			50		
BLOCKY/DISTURBED/SEAMY - folded with angular blocks	INTE			40	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECREASING				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	∜	N/A	N/A			10

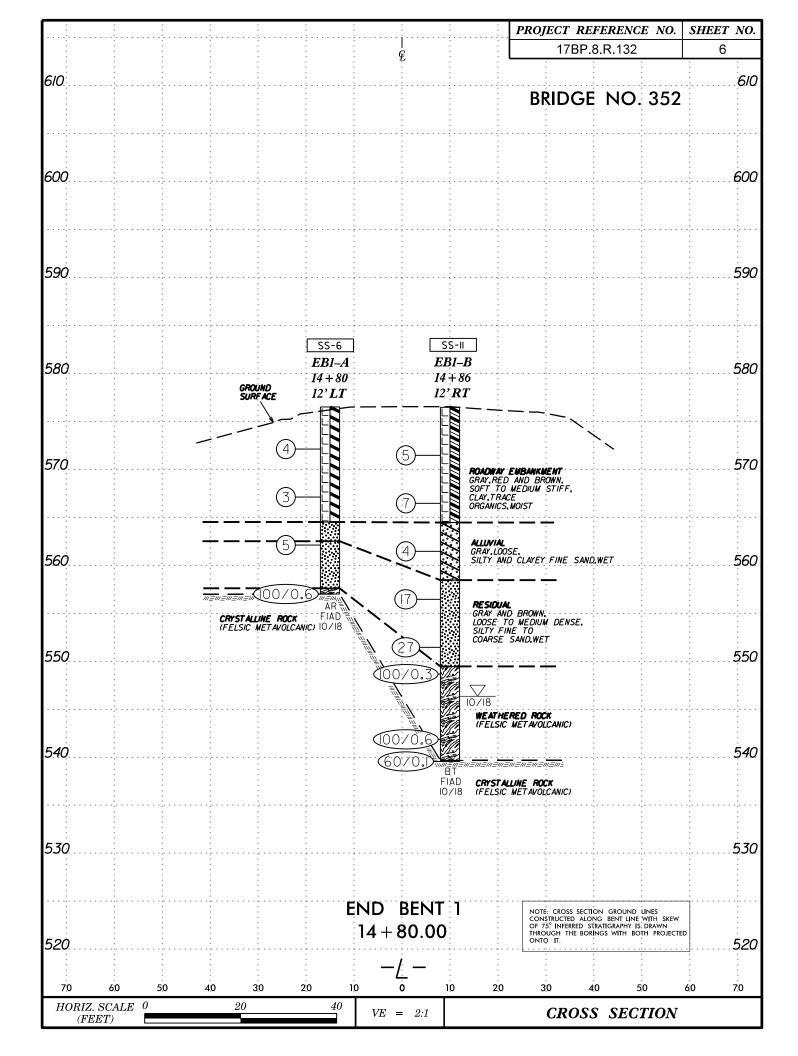
PROJECT REPERENCE NO. SHEET NO.

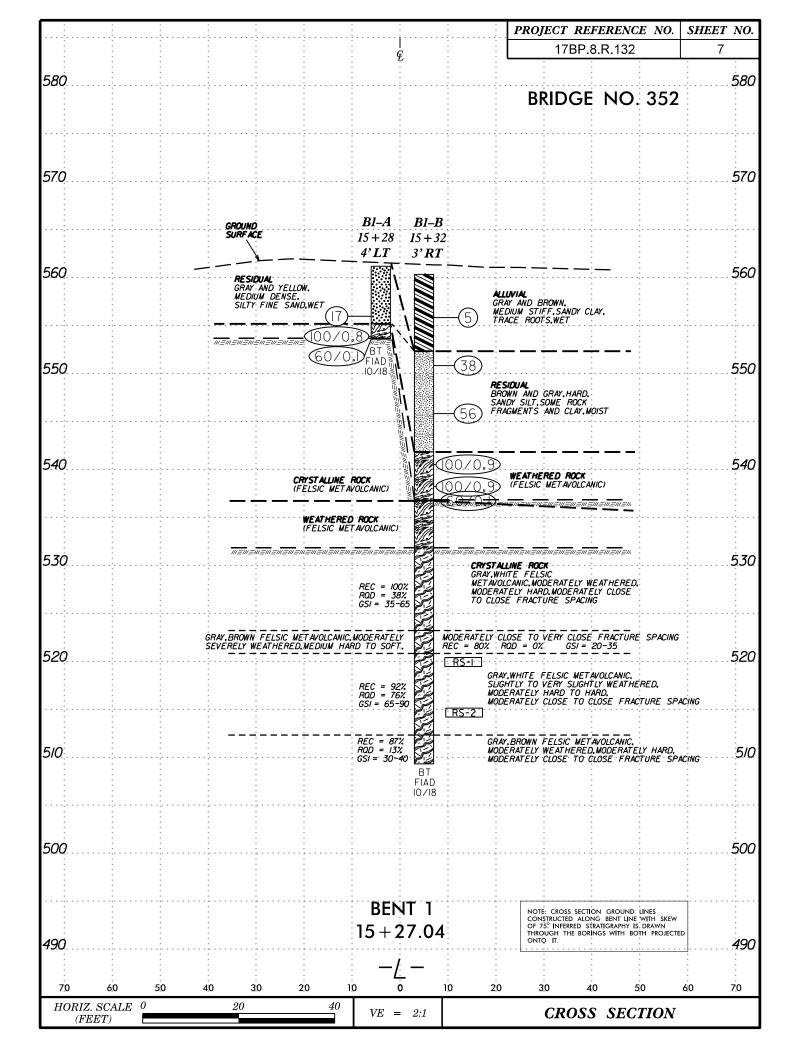
17BP.8.R.132

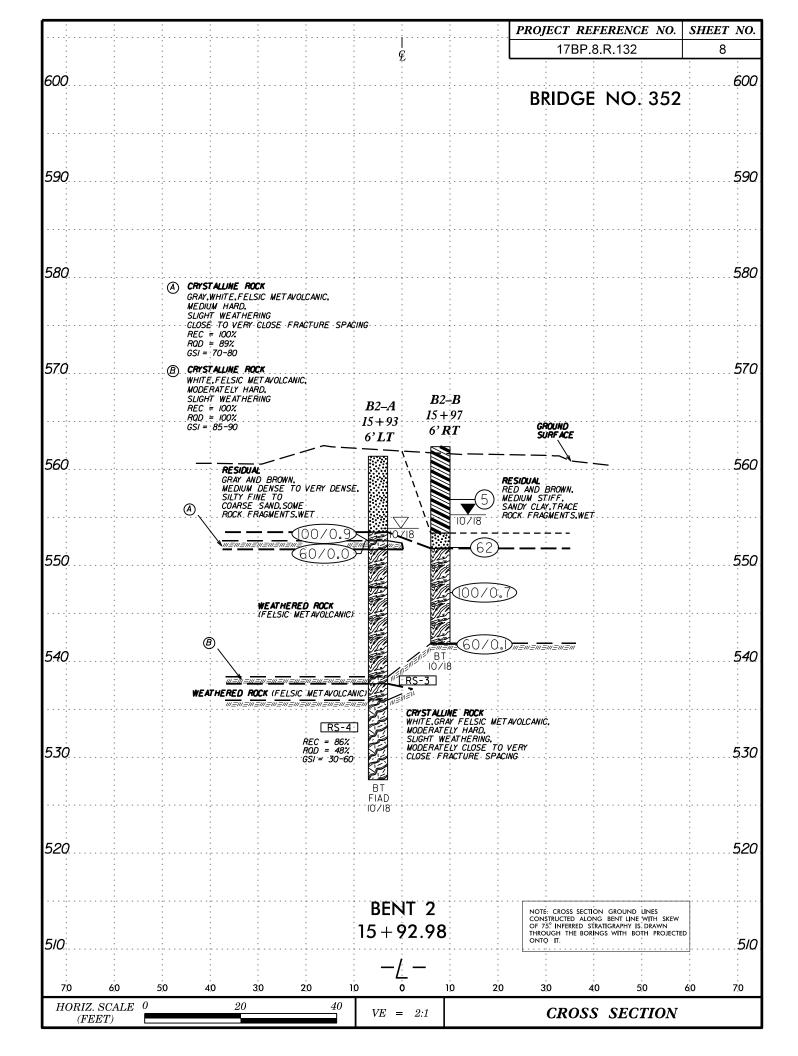

2C

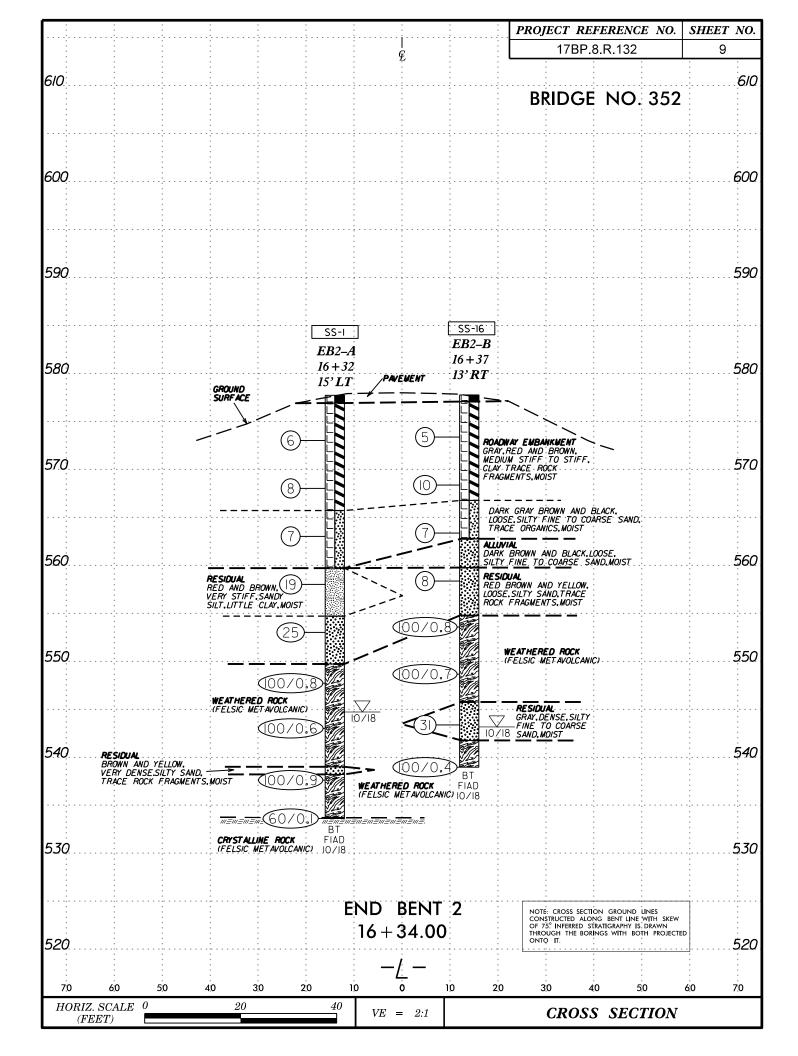

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

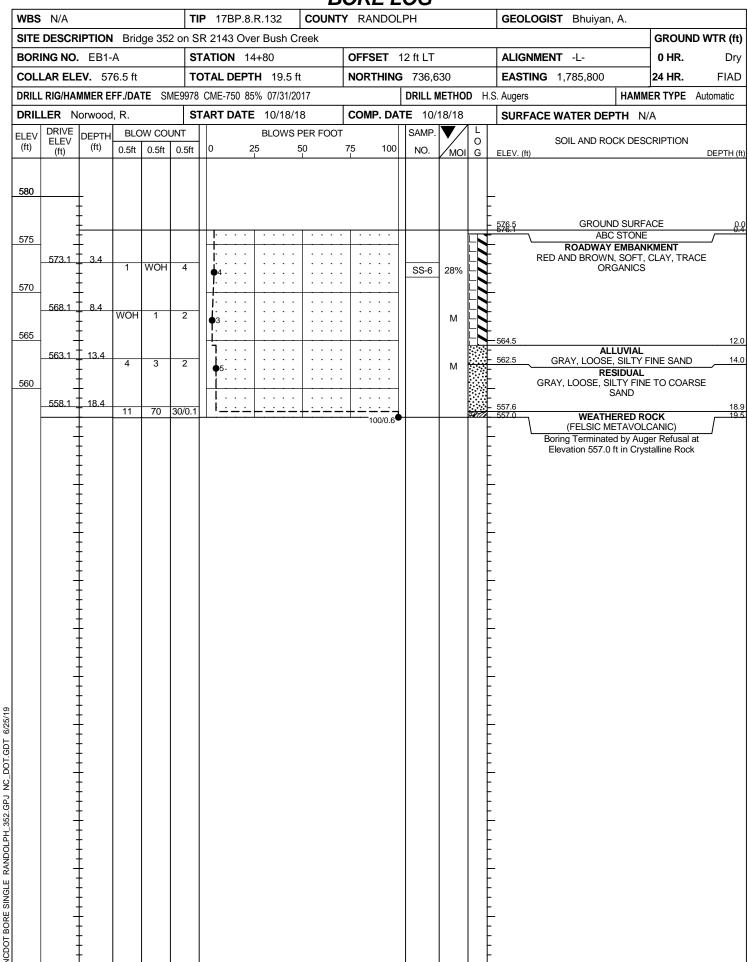

SUBSURFACE INVESTIGATION

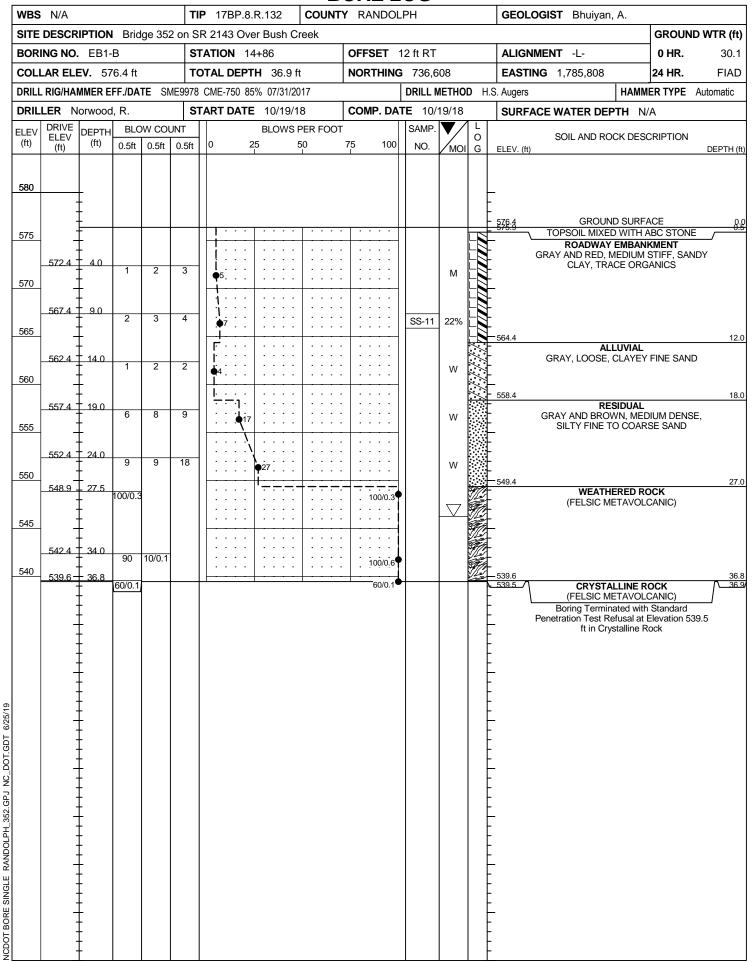

SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 2 OF 2)

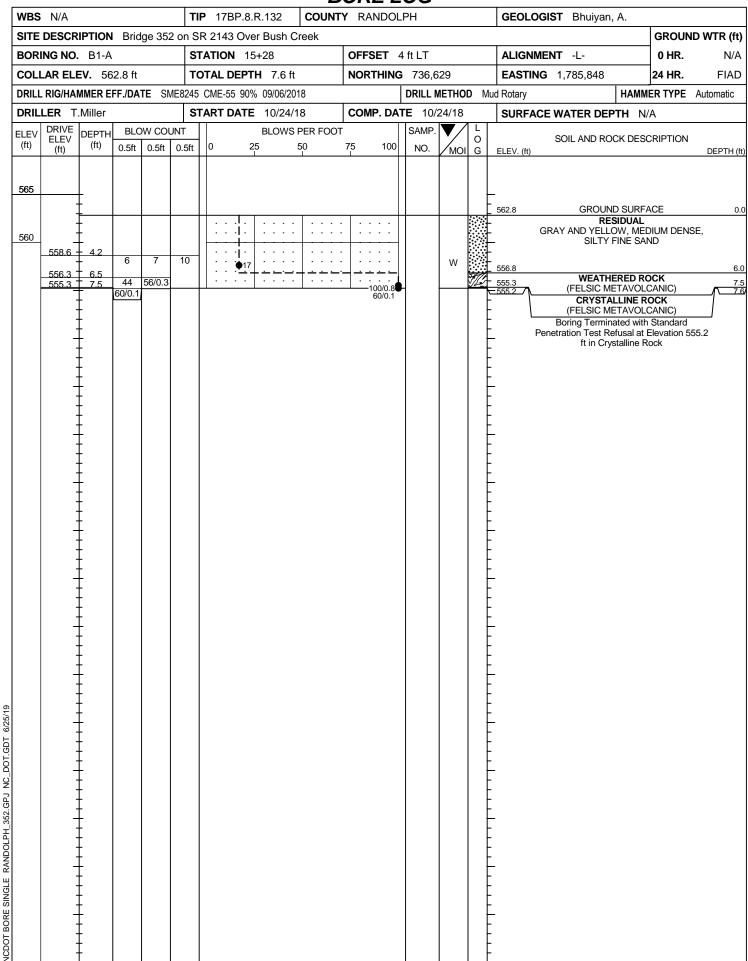

FROM AASHTO LRFD BRIDGE DESIGN AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def			•		•
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)					
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis. COMPOSITION AND STRUCTURE	VERY GOOD - Very Rough, fresh unweathered surfaces	600D - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with stone and stone with inter- layers of siltstone amounts D. Siltstone or silty shale with sand- stone layers stone layers layers		50 B 40	C [E	
C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.			\$	/ 	10
─────────────────────────────────────					DATE: 8-19-16

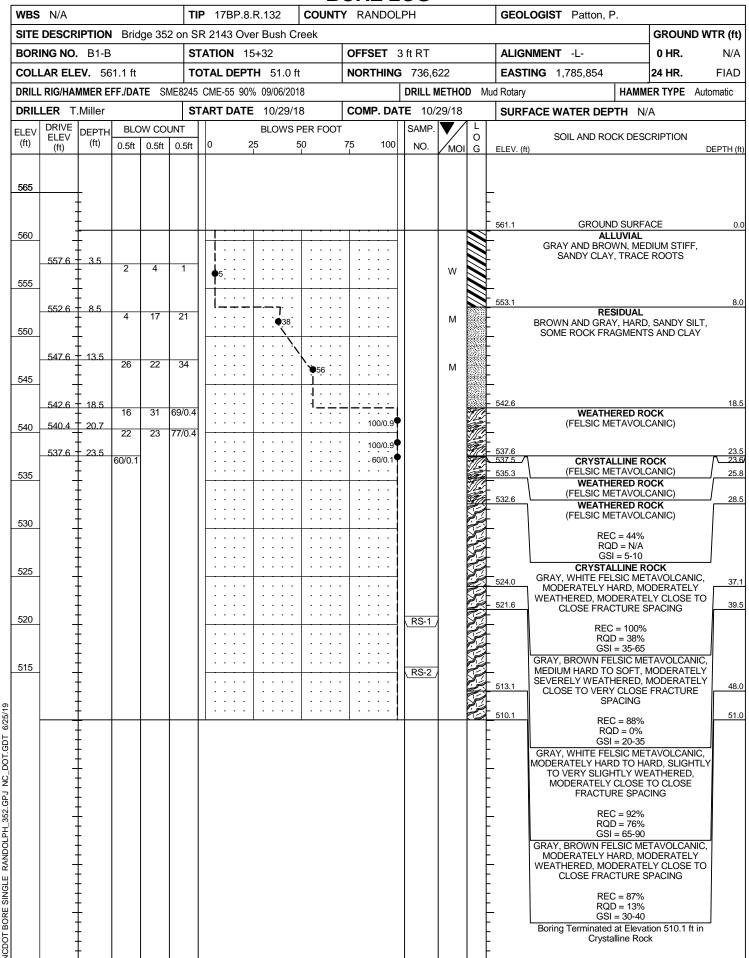




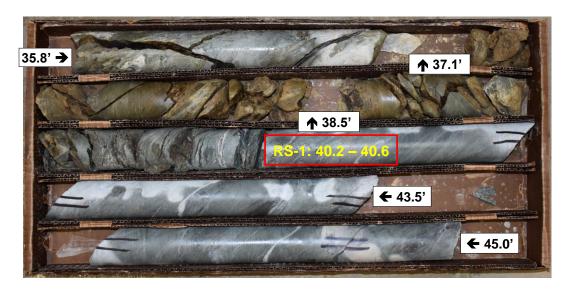


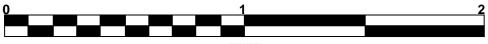






BORING NO. B1-B STATION 15+32 OFFSET 3 ft RT ALIGNMENT -L- COLLAR ELEV. 561.1 ft TOTAL DEPTH 51.0 ft NORTHING 736,622 EASTING 1,785,854 2	GROUND WTF					:OF										
BORING NO. B1-B	GROUND WTF		GEOLOGIST Patton, P.	РН	RANDOLI	YR	TNUC	C	8.R.132	17BP.	TIP				N/A	WBS
COLLAR ELEV. 561.1 ft TOTAL DEPTH 51.0 ft NORTHING 736,622 EASTING 1,785,854 2		GROUN					k	Cree	ver Bush	2143 O	n SR 2	ge 352 o	Brid	IPTION	DESCR	SITE
DRILL RIG/HAMMER EFF./DATE SME8245 CME-55 90% 09/06/2018 DRILL METHOD Mud Rotary HAMMER DRILLER T.Miller START DATE 10/29/18 COMP. DATE 10/29/18 SURFACE WATER DEPTH N/A CORE SIZE NQ TOTAL RUN 25.2 ft ELEV RUN (tt) (tt) (tt) (tt) (tt) (tt) (tt) (tt	0 HR.	0 HR.	ALIGNMENT -L-	ft RT	FSET 3	OF			15+32	TION	STAT			В1-В	NG NO.	BORI
DRILLER T.Miller START DATE 10/29/18 COMP. DATE 10/29/18 SURFACE WATER DEPTH N/A	24 HR . F	24 HR.	EASTING 1,785,854	736,622	RTHING	NO		0 ft	PTH 51.	AL DEI	TOTA		1.1 ft	V. 56	AR ELE	COLI
CORE SIZE NQ	R TYPE Automa	HAMMER TYPE	l Rotary H	DRILL METHOD Mu				/2018	09/06/	ΛE-55 9	245 CN	re sme8	FF./DA	MER EI	RIG/HAI	DRILL
RUN	4	H N/A	SURFACE WATER DEPTH	E 10/29/18	MP. DAT	СО		9/18	TE 10/2	RT DA	STAF			Miller	LER T.	DRIL
(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)								t	V 25.2 ft	AL RUI	TOTA			NQ	E SIZE	CORI
(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)			ESCRIPTION AND DEMARKS	г			ATA RQD	STR REC.	SAMP.	JN RQD	REC.		RUN	DEPTH		ELEV
535.3	DEP		ESCRIPTION AND REWARKS		ELEV. (ft		(ft) %	(ft) %	NO.	(ft) %	(ft) %		(ft)	(ft)		(ft)
532.6 28.5 530 44% 26% 44% 26% 44% 532.6 5																35,2 6
530 530 530 530 527.6 53.5 524.0 37.1 532.6 522.6 38.5 1.4 1:00/0.4 4:15 522.6 38.5 1.4 1:00/0.4 4:15 522.6 52.6 523.0 527.6 523.0 524.0 523.0 523.0 523.0 523.0 523.0 523.0 523.0 523.0 523.0 523.0 524.0 523.0 5	EATHERED.	RELY WEATHERE		BROWN, FELSIC N	-		N/A						2.7	- I	-	
Section Sect	ACING	RE SPACING	Y CLOSE TO CLOSE FRACTUR	MODERATE	- 532.6 -		(3.3)	(8.1)		(2.4)	(4.6)	1:15/0.7	5.0	- 28.5 -	532.6 -	
527.6 33.5 3.00 3.00 3.15 3.00 3.15 3.15 3.30 4.15/0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.6 522.6 38.5 1.4 1.00/0.4 4.15 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92% 76% 0.0 6.5 92					- -		38%	94%		48%	92%	3:15 4:00		-	_	530
525 3.6 3.15	_Y HARD,	ERATELY HARD,	ELSIC METAVOLCANIC, MODE	GRAY, WHITE F	-									- - 33.5	527.6 -	
524.0 37.1 43.50.6 522.6 38.5 1.4 150.06 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 6 150.0 78% 48% 76% 76% 76% 76% 76% 76% 76% 76% 76% 76	O CLOSE	LOSE TO CLOSE		MODERATELY V	-					(1.1) 31%	(3.5) 97%	3:15	3.6	-		
522.6	_				524.0							3:30 4:15/0.6			524.0	ე∠5
33.0 (3.9) (2.4) (7.8) (6.5) (7.8) (6.5) (7.8) (6.5) (7.8) (6.5) (7.8) (6.5) (7.8) (6.5) (7.8) (SIC METAVOLCANIC, MEDIUM				(0.0)					1:00/0.4 4:15		- 38.5	522.6 -	
517.6 43.5 2:30 2:45	CLOSE TO				-		(6.5)	(7.8)	RS-1	(2.4)	(3.9)	3:30 2:15	3.0	-	7	520
517.6 + 43.5 2.45 (4.9) (4.3) 98% 86% RS-2 512.6 + 48.5 2.30 2.45 (2.5) (1.0) (2.6) (3.0) 13% 510.1 51.0 2.45/0.5 (2.5) (0.0) (2.5) (0.0) (2.6) (3.0) (2.6) (3.0) (3.0) (3.0) (3.0) (4.3) (4.9) (4.9)			GSI = 20-35		<u>-</u>		70%	92%		-1 0 /0	10/6	2:30		_ /3 E	5176	
515 3:15 2:45 512.6 48.5 2:30 510.1 510.1 51.0 5:30 2:45/0.5 6.5 100% 0% 13% 5:10.1 510.1 510.1 510.1 6.5					-					(4.3)	(4.9)	3:15	5.0	- 43.3	317.0 -	
512.6 - 48.5 2:30 (2.5) (0.0) (2.5) (0.0) (2.5) (3.5)	DEIMILLI				- -				RS-2	86%	98%	3:15		-	_	515
510.1 51.0 2.3 (2.5) (0.0) 100% 0% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13					513.1		(0.4)	(2.6)				2:30		- - 48.5	512.6 -	
2:45/0.5 FRACTURE SPACING GSI = 30-40					- - _{510.1}							5:30	2.5	51.0	510.1	
	Γ				- 310.1							2:45/0.5		- 01.0	-	
Boring Terminated at Elevation 510.1 ft in Crystalline					- -									-	-	

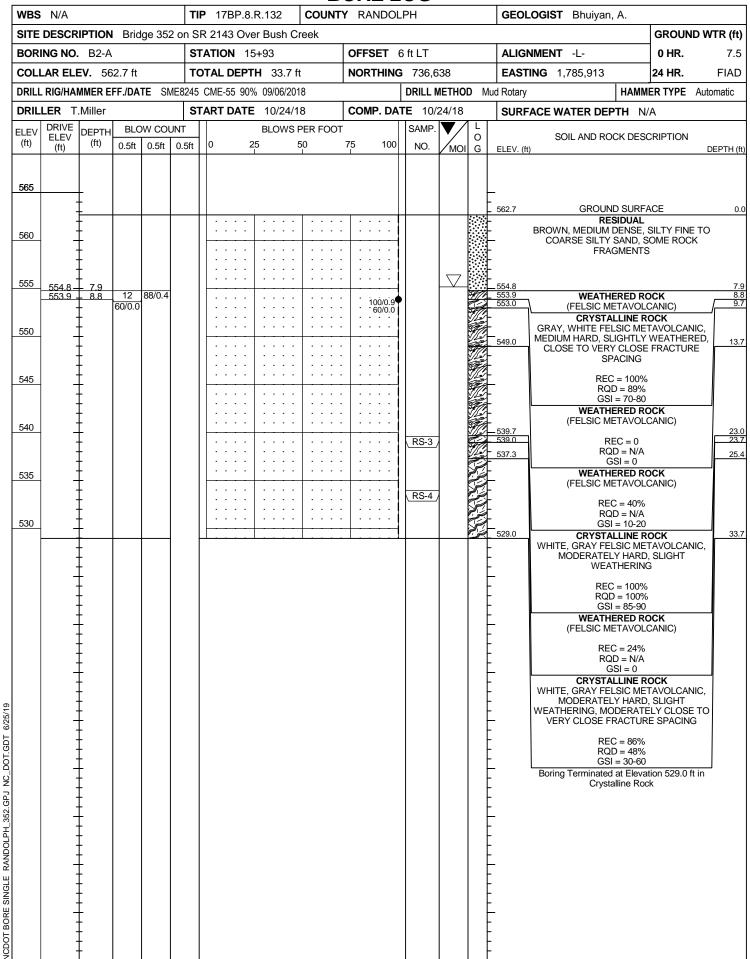



WBS No: 17BP.8.R.132		County: Randolph	Boring No.: B1-B									
Site Description: Bridge	Site Description: Bridge 352 on SR 2143 Over Bush Creek											
Collar Elev.: 577.1 ft	Core Size: NQ	Equipment: CME-55	Geologist: P. Patton									
Elev. at T.D.: 526.1 ft	Total Depth: 51.0 ft	Total Run: 25.2 ft	Date: 10/29/2018									

Box 1 of 3; Top of Box @ 25.8 Feet; Bottom of Box @ 35.8 Feet

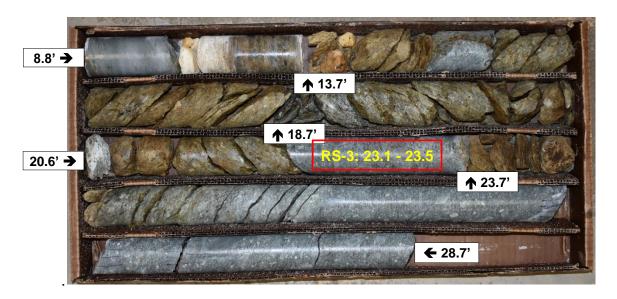
Box 2 of 3; Top of Box @ 35.8 Feet; Bottom of Box @ 45.0 Feet

FEET


CORE PHOTOS

WBS No: 17BP.8.R.132		County: Randolph	Boring No.: B1-B				
Site Description: Bridge	Driller: T. Miller						
Collar Elev.: 577.1 ft	Core Size: NQ	Equipment: CME-55	Geologist: P. Patton				
Elev. at T.D.: 526.1 ft	Total Depth: 51.0 ft	Total Run: 25.2 ft	Date: 10/29/2018				

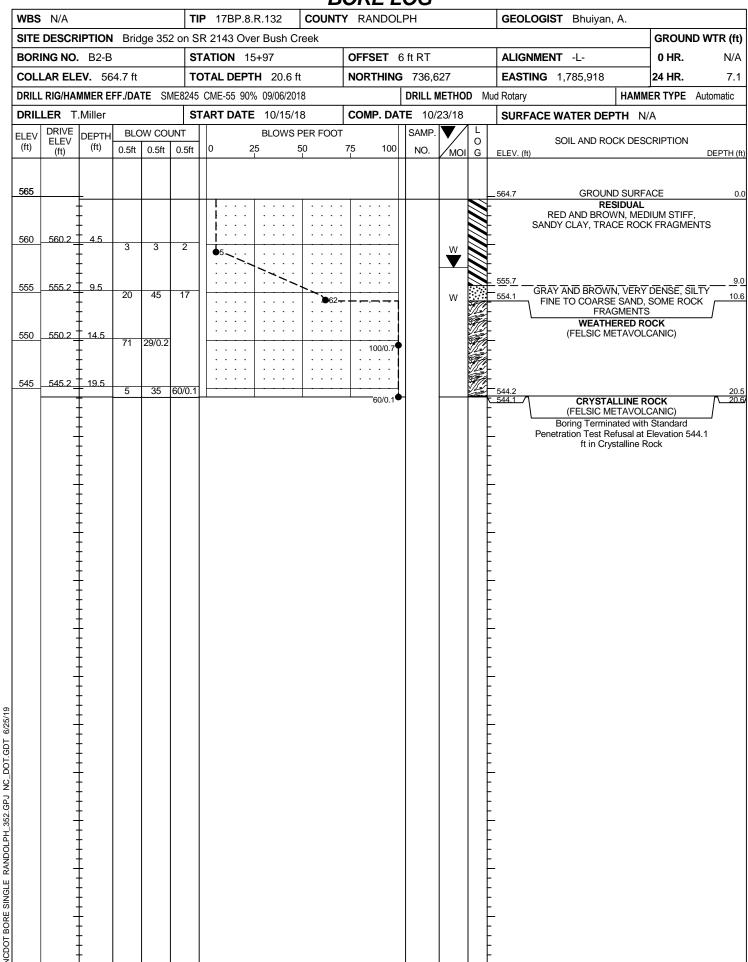
Box 3 of 3; Top of Box @ 45.0 Feet; Bottom of Box @ 51.0 Feet

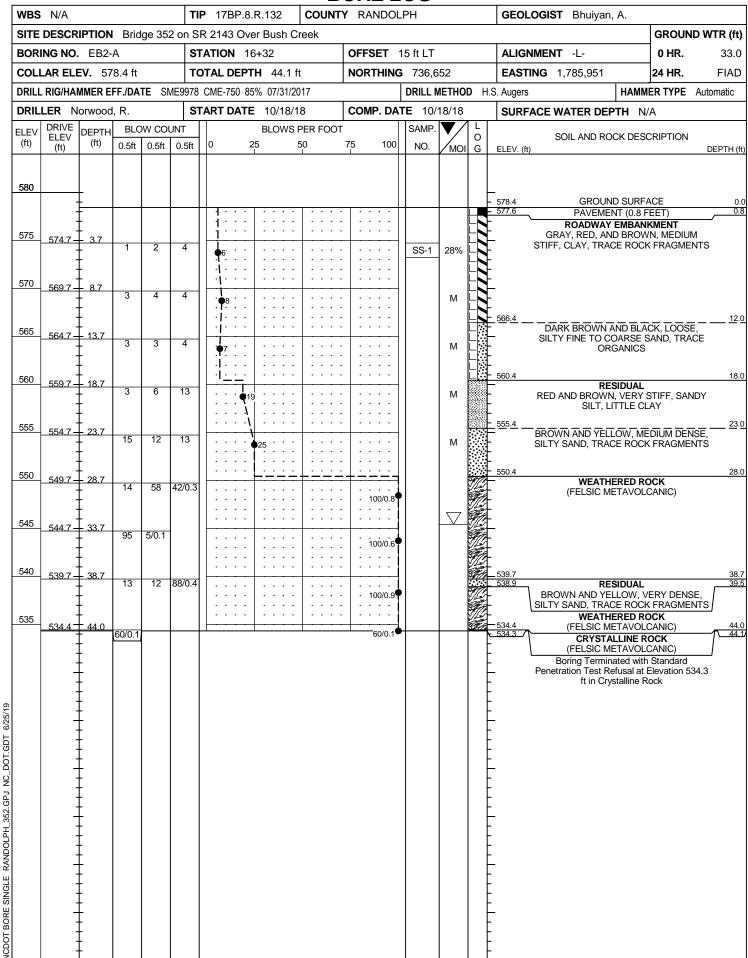


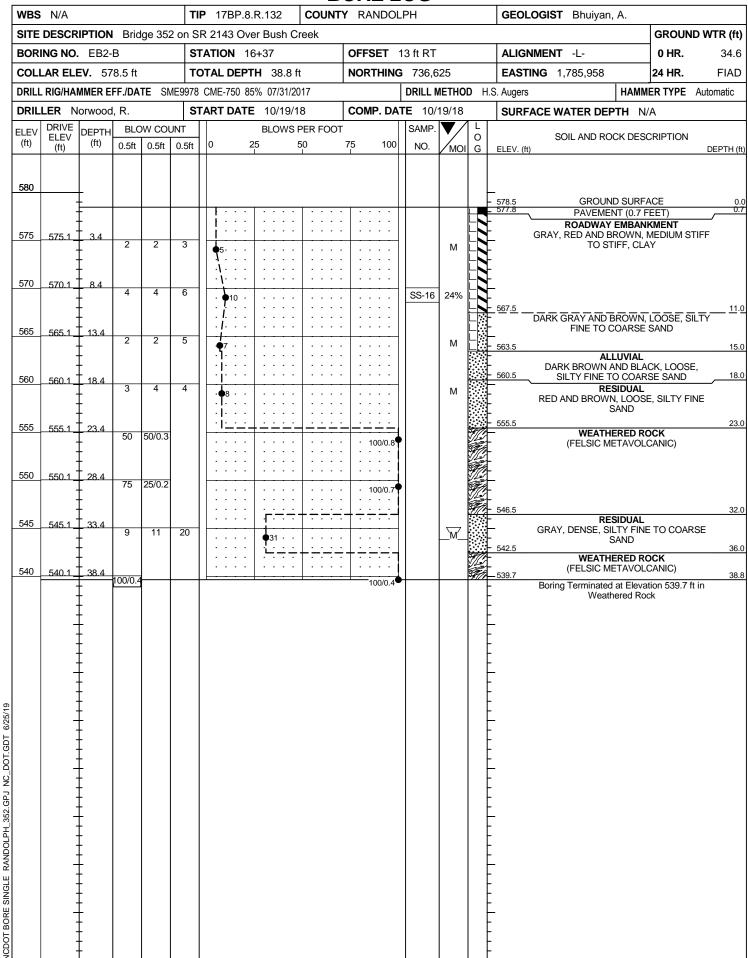
WBS	N/A				TIP	17BP	.8.R.132	C			RE L		GEOLOGI	ST Bhuiyar	ı, A.				
		IPTION	Bric	lge 352 o			Over Bush			<u> </u>			GROUND WTR						
	NG NO.						15+93			OF	FSET	S ft LT	ALIGNMEI	NT -L-		0 HR.	7.5		
COLL	AR ELE	EV . 56	2.7 ft		тот	AL DE	PTH 33.	7 ft		NO	RTHING	736,638	EASTING	1,785,913		24 HR.	FIAC		
DRILL	RIG/HAI	MMER E	FF./DA	TE SME	3245 CI	ME-55 9	90% 09/06	/2018		<u> </u>		DRILL METHOD Muc			HAMN	J IER TYPE	Automatic		
DRIL	LER T	.Miller			STAI	RT DA	TE 10/2	4/18		СО	MP. DA	TE 10/24/18	SURFACE	WATER DE	PTH N	/A			
CORI	E SIZE	NQ			тот	AL RU	N 24.9 f	t					•						
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	ELEV. (DESCRIPTION AND REMARKS							
53.86	553.9	8.8	4.9	N=60/0.0	(0.9)	(0.8)		(0.9)	(0.8)		_ 553.9			ing @ 8.8 ft			_ 8.		
550	549.0	13.7		N=60/0.0 3:40 1:30 1:32 1:25 1:30/0.9	18%	15%		\100%/ (0.0) 0%	\ <u>89%</u> N/A		_553.0 - - 549.0	GRAY, WHITE FEL WEATHERED, C	LOSE TO VE	RY CLOSE FR					
	-	19.1	5.0	3:07 2:20	(1.7) 34%	(0.0) 0%		(3.7) 40%	N/A		-	FELSIC METAVOLC	WEATH	= 70-80 ERED ROCK ELY TO COME	PLETELY	WEATHE	$\neg \vdash$		
545	544.0	18.7		2:10 2:50 2:10							- 		G	SI = 0					
	542.1	20.6	1.9	5:30 4:10/0.9	(1.3)	(0.0)					- -	GRAY, BROWN FE		ERED ROCK OLCANIC, MEI	DIUM HAI	RD TO SO	FT,		
540	-	00.7	3.1	4:10 3:22	(1.4) 45%	(0.7)					- 539.7	SEVERELY TO COM		EATHERED, CI RE SPACING	LOSE TO	VERY CL	OSE 23.		
	539.0	23.7	5.0	3:20/1.1 4:25 2:40	(3.5)	(2.3) 45%	RS-3	(0.7) 100%	(0.7) 100%		539.0 537.3	1		= 10-20			23. 25.		
535	-	<u> </u>		2:27 2:31	70%	45%		(0.4) 24%	(4.0)		-	WHITE, GRAY FELS	C METAVOLO	LLINE ROCK CANIC, MODE	RATELY	HARD, SLI			
	534.0	28.7	5.0	2:01 2:15	(4.0)	(1.7)	RS-4	(7.1) 86%	48%		 - -			THERING = 85-90					
530	-	-		2:25 3:15	79%	33%					- -	FELSIC METAVOLC	WEATH	ERED ROCK	OI ETELV	\\/E\TUE	DED.		
330	529.0	33.7		2:32 2:05							529.0	T PELSIC METAVOLO.		SI = 0	-LETELT	WEATHE	33.		
	-	Ė									-	WHITE, GRAY FELS	CRYSTA	LLINE ROCK	DATELV	HVDD 611	CHT		
	_	-									- -	WEATHERING, MC	DERATELY C						
	-	_									- -			= 30-60					
	_	<u> </u>									- -	Boring Termin		ation 529.0 ft in	Crystallin	ne Rock			
	-	<u> </u>									-								
	_	Ē									- - -								
	-										-								
	-	_									- -								
	-	-									-								
	-	-									-								
	-	<u> </u>									- -								
	-	F									-								
	_	E									_								
	-										-								
	-										- -								
	-	-									_								
	-	<u> </u>									-								
	_	_									- -								
	-	‡									- -								
	-	<u> </u>									- -								
	-	-									-								
	-	Ŧ									-								
	-	Ē									- - -								
	-	E									- -								
	-	<u> </u>									- 								
		<u>L</u>																	

CORE PHOTOS

WBS No: 17BP.8.R.132		County: Randolph	Boring No.: B2-A
Site Description: Bridge	352 on SR 2143 Over Bus	sh Creek	Driller: T. Miller
Collar Elev.: 578.1 ft	Core Size: NQ	Equipment: CME-55	Geologist: A. Bhuiyan
Elev. at T.D.: 557.4 ft	Total Depth: 33.7 ft	Total Run: 24.9 ft	Date: 10/24/2018




Box 1 of 2; Top of Box @ 8.8 Feet; Bottom of Box @ 28.7 Feet



Box 2 of 2; Top of Box @ 28.7 Feet; Bottom of Box @ 33.7 Feet

SUMMARY OF LABORATORY TEST DATA

Soil Classification and Gradation

	S&ME, Inc. Charlotte, 9751 Southern Pine Blvd,Charlotte NC, 28273																			
S&ME P	roject #:			6235-18-01	1									Date	Report:		12/	/8/2018		
State Pro	ject No.:			N/A	County:							Randolph Date Tested:					11/16-12/8/18			
Federal I	D No.:			N/A	,						17BP.8.	R.132								
Project N	lame:			Bridge 7503	352 on S	R 2143	over Bu	ısh Cree	k											
Client Na	ame:			CH Enginee	ering				Client A	Address:	3220 GI	en Roya	l Road,	Raleigh,	NC 276	517				
	#:		ınt	Sample	AASH	ITO		Total %	Passing		Tota	l Mortar	Fractio	n (%)				Organic		
Sample	Station ⁴	et	Alignment	Depth	Classific	ation		Sie	ve #		Coarse	Fine			LL	PL	PI	Content	Moist.	
No.	Stat	Offset	Alig	(ft)			10	40	60	200	Sand	Sand	Silt	Clay				%	%	
SS-1	16+32	15 LT	-L-	3.7 - 5.2	A-7-6	(21)	95	92	90	83.4	5	11	35	49	51	28	23	ND	27.5	
SS-6	14+80	12 LT	-L-	3.4 - 4.9	A-7-6	(17)	88	82	80	74.2	9	10	30	51	49	26	23	ND	28.0	
SS-11	14+86	12 RT	-L-	9.0 - 10.5	A-6	(7)	88	81	78	71.2	11	13	37	38	37	26	11	ND	21.6	
SS-16	16+37	13 RT	-L-	8.4 - 9.9	A-7-6	(20)	95	92	90	83.0	5	12	32	51	50	28	22	ND	23.9	

References / Comments / Deviations: ND=Not Determined.

AASHTO T88: Particle Size Analysis of Soils as Modified by the NCDOT

AASHTO T89: Determining the Liquid Limit of Soils

AASHTO T90: Determining the Plastic Limit & Plasticity Index of Soils

AASHTO T265: Laboratory Determination of Moisture Content of Soils

AASHTO M145: The Classification of Soils and Soil Aggregate Mixtures for Highway Construction Purposes

Karen Warner

Raw M. Warner

#118-06-0305

Luis Campos

<u>Project Manager</u>

Technician Name:

Signature

Certification #

Technical Responsibility:

Position

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-43-D7012C-02

Revision No.: 0

Revision Date: 08/22/18

UNCONFINED COMPRESSION (ASTM D7012 Method C)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project Name: Bridge 352 Over Bush Creek on SR 2143
Project Number: 6235-18-011 Ph 3
Report Date: November 12, 2018
Reviewed By: Jason B. Burgess

Γ	Boring No.	Sample	Depth	Dimens	ions, in.	Shape	Area	Unit Weight	Loading Rate	Maximum	Strength	Moisture
	boning ivo.	No.	(ft)	Length	Diameter	(See Key)	(in ²)	(lbs/ft ³)	(psi/sec)	Load (lbs)	(psi)	(%)
	B1-B	RS-1, Alt	40.2 - 40.6	4.50	1.97	В	3.05	175.3	82	31,315	10,267	0.1
	B1-B	RS-2	45.5 - 45.9	4.41	1.98	Α	3.08	175.0	86	43,614	14,160	0.1
	B2-A	RS-3	23.1 - 23.5	4.45	1.97	Α	3.05	176.8	86	39,939	13,095	0.1
	B2-A	RS-4	28.7 - 29.1	4.46	1.97	Α	3.05	178.7	86	44,978	14,747	0.1

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

Loading rates were selected to target reaching failure between 2 and 15 minutes.

Test results for specimens not meeting the requirements of ASTM D4543-08^{£1} may differ from a test specimen that meets the requirements of ASTM D4543.

SHAPE KEY

ASTM D4543-08^{£1} Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, capping the ends of the specimen as discussed in this practice is permitted."

- A Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{€1} (side straightness, end flatness & parallelism, and end perpendicularity to axis)
- B Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{€1} for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness. Specimen prepared to closest tolerances practicable.
- C Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{€1} for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- D Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{€1} for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- E Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{€1} for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness and parallelism. Specimen prepared to closest tolerances practicable.

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

y = 0.0006x + 0.0002

0.75

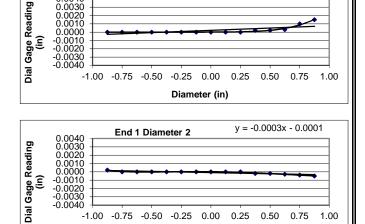
y = 0.0029x + 0.0006

0.25

1413 Topside Road, Louisville, TN 37777

Diameter (in): 1.97 Date: Project: Bridge 352 Over Bush Creek on SR 2143 11/9/2018 Project No.: 6235-18-011 Ph 3 Length (in): 4.50 Tested by: **BKP** Boring Id: B1-B Unit Weight (pcf): 175.3 Reviewed by: JBB

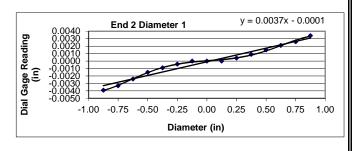
Sample No.: RS-1 ALT Moisture Content (%): 0.1


Depth (ft): 40.2 - 40.6

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?

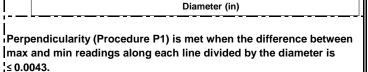
End Eletnoce and Parallaliam Pandings (Procedure ED1)


End Flatness and Parallelism Readings (Procedure FP1)					
Position	End 1	End 1(90)	End 2	End 2(90)	
- 7/8	0.0000	0.0002	-0.0039	-0.0020	
- 6/8	0.0000	0.0000	-0.0033	-0.0015	
- 5/8	0.0000	0.0000	-0.0024	-0.0010	
- 4/8	0.0000	0.0000	-0.0015	-0.0004	
- 3/8	0.0000	0.0000	-0.0009	0.0000	
- 2/8	0.0000	0.0000	-0.0004	0.0000	
- 1/8	0.0000	0.0000	0.0000	0.0000	
0	0.0000	0.0000	0.0000	0.0000	
1/8	0.0000	0.0000	0.0000	0.0003	
2/8	0.0000	0.0000	0.0004	0.0007	
3/8	0.0002	-0.0002	0.0009	0.0013	
4/8	0.0002	-0.0002	0.0015	0.0020	
5/8	0.0003	-0.0003	0.0021	0.0026	
6/8	0.0010	-0.0004	0.0026	0.0032	
7/8	0.0015	-0.0005	0.0034	0.0037	

End 1 Diameter 1

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

> Flatness Tolerance Met? YES



Diameter (in)

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelis	sm Diameter 1	
-------------	---------------	--

End 1:	Slope of Best Fit Line:	0.00055
	Angle of Best Fit Line:	0.03176
End 2:	Slope of Best Fit Line:	0.00366
	Angle of Best Fit Line:	0.20954
	Max Angular Difference:	-0.18
	wax Angulai Dillerence.	-0.16

-0.25 0.00

0.25

0.50

0.75 1.00

End 2 Diameter 2

-1.00 -0.75 -0.50

0.0040 0.0030 0.0020 0.0010

Dial Gage Reading (in)

	Parrallelism Diameter 2	
End 1:	Slope of Best Fit Line:	-0.00029
	Angle of Best Fit Line:	-0.01670
End 2:	Slope of Best Fit Line:	0.00289
	Angle of Best Fit Line:	0.16583
	Max Angular Difference:	-0.18
	-	

YES

Parallelism Tolerance Met?

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0015	0.0008	YES
End 1 Diam 2	0.0007	0.0004	YES
End 2 Diam 1	0.0073	0.0037	YES
End 2 Diam 2	0.0057	0.0029	YES
Perpendicularity T	YES		

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

y = 0.0016x + 0.0005

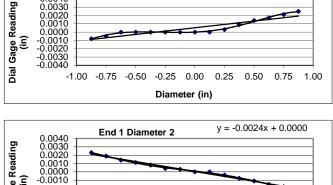
1413 Topside Road, Louisville, TN 37777

 Project:
 Bridge 352 Over Bush Creek on SR 2143
 Diameter (in): 1.98
 Date:
 11/9/2018

 Project No.:
 6235-18-011 Ph 3
 Length (in): 4.41
 Tested by:
 BKP

 Boring Id:
 B1-B
 Unit Weight (pcf): 175.0
 Reviewed by:
 JBB

Sample No.: RS-2 Moisture Content (%): 0.1

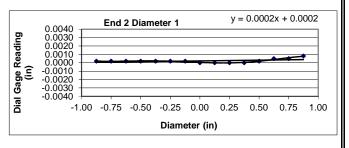

Depth (ft): 45.5 - 45.9

Deviation From Straightness (Procedure S1)

ls the maximum gap ≤ 0.02 in.? YES Straightness Tolerance Met? YES

End Flatness and Parallelism Readings (Procedure FP1)

End Flatness and Parallelism Readings (Procedure FP1)					
Position	End 1	End 1(90)	End 2	End 2(90)	
- 7/8	-0.0008	0.0023	0.0002	0.0000	
- 6/8	-0.0005	0.0019	0.0002	0.0000	
- 5/8	0.0000	0.0014	0.0002	0.0000	
- 4/8	0.0000	0.0011	0.0002	0.0000	
- 3/8	0.0000	0.0008	0.0002	0.0000	
- 2/8	0.0000	0.0004	0.0002	0.0000	
- 1/8	0.0000	0.0003	0.0002	0.0000	
0	0.0000	0.0000	0.0000	0.0000	
1/8	0.0000	0.0000	0.0000	0.0000	
2/8	0.0003	-0.0004	0.0000	0.0000	
3/8	0.0009	-0.0008	0.0000	0.0001	
4/8	0.0014	-0.0011	0.0002	0.0006	
5/8	0.0017	-0.0015	0.0005	0.0007	
6/8	0.0021	-0.0018	0.0005	0.0007	
7/8	0.0025	-0.0021	0.0008	0.0008	



End 1 Diameter 1

0.0030 0.0020 0.0010 0.0010 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelism Diameter 1

	Farranensin Diameter i	
End 1:	Slope of Best Fit Line:	0.00160
	Angle of Best Fit Line:	0.09184
End 2:	Slope of Best Fit Line:	0.00018
	Angle of Best Fit Line:	0.01031
	Max Angular Difference:	0.08

0.0040 End 2 Diameter 2	
0.0030 0.0020 0.0020 0.0020 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0030 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Diameter (in))

Parrallelism	Diameter 2
--------------	------------

	i diranensin Diameter 2	
End 1:	Slope of Best Fit Line:	-0.00237
	Angle of Best Fit Line:	-0.13587
End 2:	Slope of Best Fit Line:	0.00046
	Angle of Best Fit Line:	0.02619
	Max Angular Difference:	-0.16

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0033	0.0017	YES
End 1 Diam 2	0.0044	0.0022	YES
End 2 Diam 1	0.0008	0.0004	YES

0.0008

0.0004

YES

Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is

Parallelism Tolerance Met? <u>YES</u> Perpendicularity Tolerance Met? <u>YES</u>

End 2 Diam 2

≤ 0.0043.

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

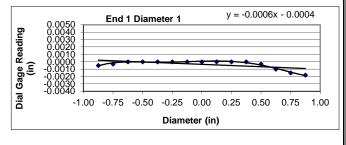
1413 Topside Road, Louisville, TN 37777

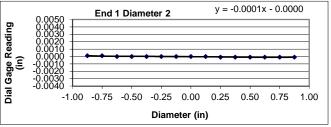
 Project:
 Bridge 352 Over Bush Creek on SR 2143
 Diameter (in): 1.97
 Date:
 11/9/2018

 Project No.:
 6235-18-011 Ph 3
 Length (in): 4.45
 Tested by:
 BKP

 Boring Id:
 B2-A
 Unit Weight (pcf): 176.8
 Reviewed by:
 JBB

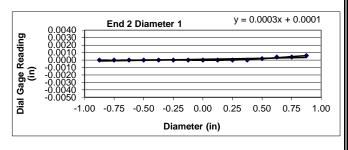
Sample No.: RS-3 Moisture Content (%): 0.1


Depth (ft): 23.1 - 23.5

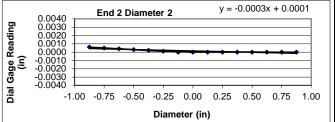

Deviation From Straightness (Procedure S1)

ls the maximum gap ≤ 0.02 in.? YES Straightness Tolerance Met? YES

End Flatness and Parallelism Readings (Procedure FP1)


End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	-0.0005	0.0001	0.0000	0.0006
- 6/8	-0.0003	0.0001	0.0000	0.0005
- 5/8	0.0000	0.0000	0.0000	0.0004
- 4/8	0.0000	0.0000	0.0000	0.0003
- 3/8	0.0000	0.0000	0.0000	0.0002
- 2/8	0.0000	0.0000	0.0000	0.0001
- 1/8	0.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0000	0.0000	0.0000	0.0000
2/8	0.0000	-0.0001	0.0000	0.0000
3/8	0.0000	-0.0001	0.0000	0.0000
4/8	-0.0003	-0.0001	0.0002	0.0000
5/8	-0.0010	-0.0001	0.0004	0.0000
6/8	-0.0015	-0.0001	0.0004	0.0000
7/8	-0.0018	-0.0001	0.0006	0.0000

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.


Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelism Diameter 1

End 1:	Slope of Best Fit Line:	-0.00064
	Angle of Best Fit Line:	-0.03683
End 2:	Slope of Best Fit Line:	0.00027
	Angle of Best Fit Line:	0.01539
	Max Angular Difference:	-0.05

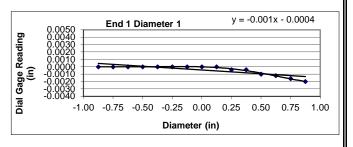
Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is \$\\ \leq 0.0043\$.

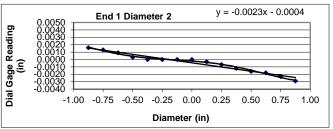
	Parrallelism Diameter 2		İ	Difference	Divide by	Meets
End 1:	Slope of Best Fit Line:	-0.00011		b/w max & min	Diameter	Tolerance
	Angle of Best Fit Line:	-0.00655	End 1 Diam 1	0.0018	0.0009	YES
End 2:	Slope of Best Fit Line:	-0.00032	End 1 Diam 2	0.0002	0.0001	YES
	Angle of Best Fit Line:	-0.01833	End 2 Diam 1	0.0006	0.0003	YES
	Max Angular Difference:	0.01	End 2 Diam 2	0.0006	0.0003	YES
Parallelism T	olerance Met?	<u>YES</u>	Perpendicularity ¹	Tolerance Met?		<u>YES</u>

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

1413 Topside Road, Louisville, TN 37777

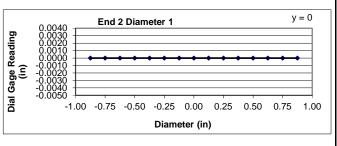
Project: Diameter (in): 1.97 Date: Bridge 352 Over Bush Creek on SR 2143 11/9/2018 Project No.: 6235-18-011 Ph 3 Length (in): 4.46 Tested by: **BKP** Boring Id: B2-A Unit Weight (pcf): 178.7 Reviewed by: JBB


Sample No.: RS-4 Moisture Content (%): 0.1

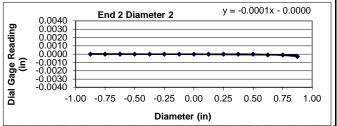

28.7 - 29.1 Depth (ft):

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?


End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	0.0000	0.0016	0.0000	0.0000
- 6/8	0.0000	0.0013	0.0000	0.0000
- 5/8	0.0000	0.0009	0.0000	0.0000
- 4/8	0.0000	0.0003	0.0000	0.0000
- 3/8	0.0000	0.0000	0.0000	0.0000
- 2/8	0.0000	0.0000	0.0000	0.0000
- 1/8	0.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0000	-0.0003	0.0000	0.0000
2/8	-0.0004	-0.0007	0.0000	0.0000
3/8	-0.0004	-0.0012	0.0000	0.0000
4/8	-0.0010	-0.0016	0.0000	0.0000
5/8	-0.0012	-0.0018	0.0000	-0.0001
6/8	-0.0016	-0.0023	0.0000	-0.0001
7/8	-0.0020	-0.0029	0.0000	-0.0003

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.


> Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

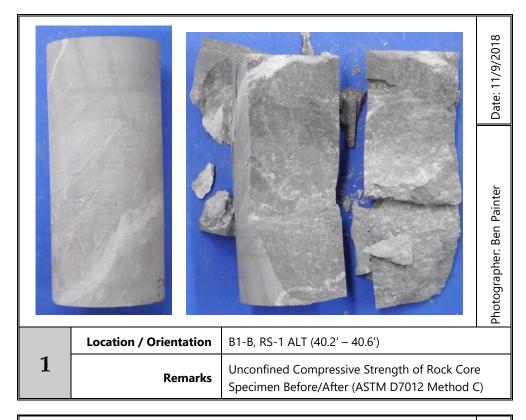
Parrallelis	sm Diameter 1	
-------------	---------------	--

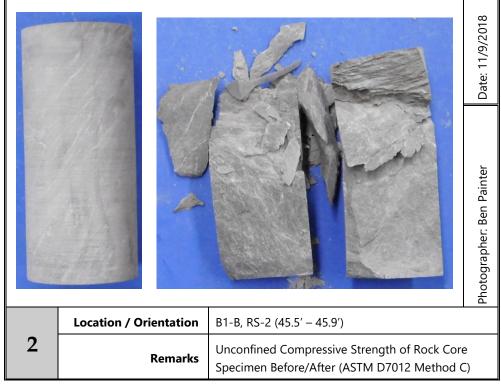
End 1:	Slope of Best Fit Line:	-0.00102
	Angle of Best Fit Line:	-0.05828
End 2:	Slope of Best Fit Line:	0.00000
	Angle of Best Fit Line:	0.00000
	Max Angular Difference:	-0.06

≤ 0.0043.

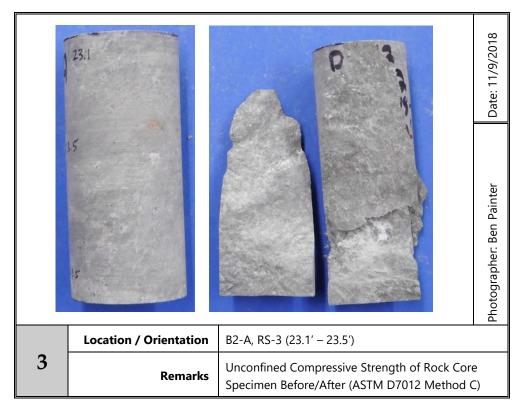
YES

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0020	0.0010	YES
End 1 Diam 2	0.0045	0.0023	YES
End 2 Diam 1	0.0000	0.0000	YES
End 2 Diam 2	0.0003	0.0002	YES
Perpendicularity T	<u>YES</u>		


Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is


Parrallelism	Diameter 2
--------------	------------

Parallelism Tolerance Met?


	i diranensini Diameter Z	
End 1:	Slope of Best Fit Line:	-0.00227
	Angle of Best Fit Line:	-0.13014
End 2:	Slope of Best Fit Line:	-0.00009
	Angle of Best Fit Line:	-0.00524
	Max Angular Difference:	-0.12

